Neoadjuvant Systemic Chemotherapy in the Management of Extensive Eyelid Sebaceous Gland Carcinoma: A study of 10 Cases

Swathi Kaliki, M.D.*, Anuradha Ayyar, M.D.*, Akshay G Nair, M.D.*, Dilip K Mishra, M.D.†, Vijay Anand P Reddy,*, and Milind N Naik, M.D.*

*Institute for Eye Cancer; and †Ophthalmic Pathology Service, L V Prasad Eye Institute, Hyderabad, India

Original Investigation

Purpose: To report the efficacy of neoadjuvant systemic chemotherapy in the management of eyelid sebaceous gland carcinoma (SGC).

Methods: Retrospective study of 10 patients that received neoadjuvant systemic chemotherapy (Cisplatin/Carboplatin and 5-Fluorouracil) for eyelid SGC.

Results: The mean age at presentation of eyelid SGC was 58 years (median, 55 years; range, 45 to 72 years). There were 6 females and 4 males. The mean tumor basal diameter was 36 mm (median, 31 mm, range, 20 to 65 mm), with orbital tumor extension in 9 cases. On the basis of TNM Classification, the tumors were classified as T3 (n = 10), N1 (n = 6), and M1 (n = 2). The mean number of cycles of neoadjuvant systemic chemotherapy per patient was 3 (median, 3; range, 3 to 4). The mean percentage reduction of tumor basal diameter after neoadjuvant chemotherapy was 74% (median, 80%; range, 30% to 100%). None of them had any major systemic side-effects of neoadjuvant chemotherapy. Postchemotherapy, surgical treatment for residual tumor was performed in 7 cases. Five cases underwent excision biopsy and 2 cases with residual orbital component underwent eyelid-sparing orbital exenteration. No tumor recurrence was noted in any of the 7 cases at a mean follow-up period of 18 months (median, 14 months; range, 3 to 63 months). One patient died due to systemic metastasis.

Conclusion: Neoadjuvant systemic chemotherapy is effective and safe in the management of eyelid sebaceous gland carcinoma. (Ophthal Plast Reconstr Surg 2015;XX:00–00)

Sebaceous gland carcinoma (SGC) is a potentially aggressive malignancy arising from the sebaceous glands. The head and neck region, particularly the eyelid is the most common site of SGC owing to the high density of sebaceous glands. Sebaceous gland carcinoma is the most common eyelid malignancy in the Asian Indian population accounting for 28% to 60% cases, while it is relatively uncommon in the western population accounting for only 4% to 5% of eyelid malignancies.

The management of eyelid SGC depends on the tumor location, tumor extent, and the systemic status of the patient. Treatment options include wide excision biopsy under frozen section or Mohs microsurgery control and subsequent eyelid reconstruction for relatively small and well-defined lesions, cryotherapy and/or topical mitomycin-c for pagetoid tumor invasion of the conjunctiva, external beam radiotherapy for extensive eyelid lesions, orbital exenteration for those with orbital tumor extension or extensive involvement of the conjunctiva by pagetoid tumor spread, and observation for terminally ill patients with extensive systemic metastasis. The use of systemic chemotherapy for eyelid SGC is sparsely described in the literature as isolated case reports. Hereby, we describe our experience with the use of systemic intravenous chemotherapy in the management of eyelid SGC in 10 patients.

Methods

A computerized database search was conducted for patients with a diagnostic coding of “eyelid sebaceous gland carcinoma (SGC)” from January 1, 2000 to April 30, 2014 at the Institute for Eye Cancer, L V Prasad Eye Institute, Hyderabad, India. Institutional Review Board approval was obtained. All medical records were reviewed to assess the primary treatment for SGC at our institute in each case. The patients who received neoadjuvant chemotherapy included those with extensive eyelid sebaceous gland carcinoma with/or without orbital extension, the complete treatment of which would require orbital exenteration or more than 75% loss of eyelid tissue, and those with intact globe and useful vision. The patients who were fit for systemic chemotherapy with normal blood profile and renal function tests were selected for treatment with neoadjuvant chemotherapy. Neoadjuvant chemotherapy was given to avoid an orbital exenteration or allow an eyelid sparing orbital exenteration. All patients who received neoadjuvant systemic chemotherapy for SGC with follow-up visit for clinical evaluation during each cycle of systemic chemotherapy and on its completion were included in this study. The patients who were lost to follow up during the course of neoadjuvant chemotherapy were excluded.

The demographic data and details of history retrieved from the medical records included age at presentation (years), gender, affected eye, referral diagnosis, history of prior intervention, presenting complaints, and duration of symptoms (months). Best-corrected visual acuity was recorded. Tumor details including tumor epicenter (upper eyelid, lower eyelid, caruncle, only conjunctival), extent of tissue involvement by the tumor (eyelids, canthus, caruncle, conjunctiva, orbit, lacrimal system, para nasal sinuses, intracranial extension), gland of tumor origin (meibomian gland, Glands of Zeiss, sebaceous glands of caruncle, ectopic), largest tumor dimension (mm), lesion morphology (nodular, noduloulcerative, diffuse eyelid thickening, diffuse conjunctival lesion, fungating mass), and associated features (loss of eyelashes, intrinsic vascularity, overlying skin and underlying conjunctival changes) were noted. Photographic documentation was done in all cases. In those cases...
<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (years)/Gender</th>
<th>Tumor epicenter (eyelid)</th>
<th>Maximum basal dimension (mm)</th>
<th>Indication of neoadjuvant chemotherapy</th>
<th>TNM staging*</th>
<th>Chemotherapy regimen</th>
<th>Number of cycles of chemotherapy</th>
<th>Response to chemotherapy</th>
<th>Surgical intervention post-chemotherapy</th>
<th>Residual tumor on HPE</th>
<th>Adjuvant treatment</th>
<th>Final outcome at last follow up</th>
<th>Follow-up duration (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70/M</td>
<td>Upper</td>
<td>45</td>
<td>Yes</td>
<td>T3bN1M0</td>
<td>Car+5-FU</td>
<td>4</td>
<td>Moderate</td>
<td>None†</td>
<td>na</td>
<td>Yes</td>
<td>Alive</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>55/F</td>
<td>Lower</td>
<td>30</td>
<td>Yes</td>
<td>T3bN1M0</td>
<td>Car+5-FU</td>
<td>3</td>
<td>Moderate</td>
<td>Eyelid sparing orbital exenteration</td>
<td>na</td>
<td>No</td>
<td>Alive</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>50/M</td>
<td>Upper</td>
<td>65</td>
<td>Yes</td>
<td>T3bN1M1</td>
<td>Cis+5-FU</td>
<td>3</td>
<td>Moderate</td>
<td>None‡</td>
<td>na</td>
<td>No</td>
<td>Alive</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>55/M</td>
<td>Upper</td>
<td>31</td>
<td>No</td>
<td>T3aN1M0</td>
<td>Cis+5-FU</td>
<td>3</td>
<td>Good</td>
<td>Excision biopsy with local flaps/grafts</td>
<td>Yes</td>
<td>EBRT-1</td>
<td>Alive</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>70/F</td>
<td>Upper</td>
<td>20</td>
<td>Yes</td>
<td>T3bN0M0</td>
<td>Cis+5-FU</td>
<td>3</td>
<td>Good</td>
<td>None§</td>
<td>na</td>
<td>No</td>
<td>Alive</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>72/M</td>
<td>Upper</td>
<td>30</td>
<td>Yes</td>
<td>T3aN1M1</td>
<td>Cis+5-FU</td>
<td>4</td>
<td>Good</td>
<td>Eyelid sparing orbital exenteration</td>
<td>na</td>
<td>None</td>
<td>Alive</td>
<td>63</td>
</tr>
<tr>
<td>7</td>
<td>45/F</td>
<td>Lower</td>
<td>39</td>
<td>Yes</td>
<td>T3bN0M0</td>
<td>Cis+5-FU</td>
<td>3</td>
<td>Moderate</td>
<td>Excision biopsy with local flaps/grafts</td>
<td>Yes</td>
<td>None</td>
<td>Alive</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>55/F</td>
<td>Upper</td>
<td>50</td>
<td>Yes</td>
<td>T3bN0M0</td>
<td>Cis+5-FU</td>
<td>3</td>
<td>Good</td>
<td>Excision biopsy with direct closure</td>
<td>Yes</td>
<td>EBRT-1</td>
<td>Alive</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>50/F</td>
<td>Lower</td>
<td>30</td>
<td>Yes</td>
<td>T3bN0M0</td>
<td>Cis+5-FU</td>
<td>3</td>
<td>Good</td>
<td>Excision biopsy with direct closure</td>
<td>Yes</td>
<td>EBRT-2</td>
<td>Alive</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>59/F</td>
<td>Lower</td>
<td>20</td>
<td>Yes</td>
<td>T3bN1M0</td>
<td>Cis+5-FU</td>
<td>3</td>
<td>Good</td>
<td>None</td>
<td>No</td>
<td>EBRT-1</td>
<td>Alive</td>
<td>18</td>
</tr>
</tbody>
</table>

*Based on American Joint Cancer Committee (AJCC) classification; †Patient was advised orbital exenteration, but was lost to follow up. ‡Patient was advised orbital exenteration but refused surgery and eventually died due to systemic metastasis. §Patient was advised excision biopsy but the patient refused surgery because there was no clinical evidence of persistent tumor.

mm, millimeters; Group 1, to facilitate minimally invasive eyelid surgery; Group 2, to avoid orbital exenteration; HPE, histopathology examination; M, male; F, female; Mei, Meibomian gland; T, tumor size; N, lymph node; M, systemic metastasis; Car, carboplatin; Cis, cisplatin; 5-FU, 5-fluoro uracil; na, not applicable; EBRT-1, external beam radiotherapy to the orbit and regional lymph nodes; EBRT-2, external beam radiotherapy to the orbit.
with no visualization of posterior extent of tumor, CT of the orbit was performed. Locoregional lymph node examination was performed and in those cases with palpable lymph nodes, fine needle aspiration cytology was performed. Systemic metastatic workup was done with chest x-ray, ultrasound abdomen, and liver function tests. All tumors were retrospectively classified by TNM staging (Tx, 0, is, 1, 2, 3, or 4; N0 or 1; M0 or 1) based on 7th edition of American Joint Cancer Committee Classification.17

Prior to systemic intravenous chemotherapy, incisional biopsy from the tumor was performed to confirm the diagnosis of SGC by histopathology. Treatment details regarding systemic intravenous chemotherapy drugs, number of cycles, interval between each cycle (weeks), and side effects of chemotherapy were recorded. After each cycle of systemic chemotherapy, tumor details including largest tumor dimension (mm) and extent of tissue involvement by the tumor were noted. On the basis of the response to treatment, the tumor response was classified as good response (>75% reduction in tumor size and 100% reduction in orbital component), moderate response (50% to 75% reduction in eyelid tumor size and <100% reduction in orbital component), or poor response (<50% reduction in eyelid tumor size and <100% reduction in orbital component) to treatment. Cases with good response to neoadjuvant systemic chemotherapy were advised eyelid excision biopsy with wide margins under frozen section control, and those with moderate/poor response were advised orbital exenteration. Details of adjuvant treatment (external beam radiotherapy, radical neck dissection, adjuvant systemic chemotherapy) were noted.

Histopathology features (degree of differentiation, growth pattern, pagetoid spread, mitosis, perineural and/or perivascular invasion) were noted. The final outcome at last follow up (alive with disease, alive with no evidence of disease, dead due to disease, dead due to other causes) was recorded.

RESULTS

Of the 191 cases with eyelid SGC, 16 patients were advised neoadjuvant systemic chemotherapy. Of these 16 cases, only 10 cases were included in this study based on our inclusion criteria (Table 1).

The mean age at presentation of eyelid SGC was 58 years (median, 55 years; range, 45 to 72 years). There were 6 females and 4 males.
The most common presenting complaint was appearance of an eyelid mass (n = 10). The mean duration of symptoms was 18 months (median, 17 months; range, 5 to 26 months). There was a previous history of excision biopsy in 6 cases. In these 6 cases, the time interval between prior excision biopsy and tumor recurrence was 11 months (median, 13 months; range, 1 to 26 months). All cases had massive eyelid lesion (largest tumor basal diameter ≥ 20 mm) on presentation with a mean tumor basal diameter of 36 mm (median, 31 mm, range, 20 to 65 mm). Tumor epicenter was located in upper (n = 6) or lower (n = 4) eyelid. Orbital tumor extension was evident in 9 cases. There were associated features of loss of eyelashes (n = 8), overlying skin fixation (n = 5), and underlying conjunctival involvement (n = 8). On the basis of TNM Classification, the tumors were classified as T3 (n = 10), N1 (n = 6), and M1 (n = 2).

The purpose of neoadjuvant chemotherapy was to facilitate minimally invasive eyelid surgery in 1 case (Fig. A) and to avoid orbital exenteration in 9 cases. All patients received a combination of cisplatin/carboplatin and 5-fluorouracil as neoadjuvant systemic chemotherapy every 3 weeks. On the basis of extrapolation of data from head and neck cancers, 3 cycles of neoadjuvant chemotherapy were planned in all cases, but the number of cycles was modified based on tumor response. The mean number of cycles of neoadjuvant systemic chemotherapy per patient was 3 (median, 3; range, 3 to 4). All patients except 2, received planned 3 cycles of neoadjuvant chemotherapy. Two patients received 4 cycles of chemotherapy as the tumor showed minimal tumor residue with 3 cycles, and the fourth cycle was given to achieve near total tumor regression with chemotherapy. The mean percentage reduction of tumor basal diameter after neoadjuvant chemotherapy was 74% (median, 80%; range, 50% to 90%). All patients had transient side-effects (nausea, vomiting, pancytopenia) with quick recovery, and none of them developed any major side-effects due to systemic chemotherapy. Postchemotherapy, surgical treatment for residual tumor was performed in 7 cases, while 3 cases were lost to follow up after neoadjuvant chemotherapy. Of these 3 patients lost to follow up, 1 patient had good response and was advised excision biopsy of the residual tumor, and 2 had moderate response and were advised orbital exenteration. Of those who underwent surgical treatment postchemotherapy, 5 cases had good response to treatment and underwent eyelid excision biopsy with wide margins under frozen section control and eyelid reconstruction (n = 5) and 2 cases with moderate response to treatment with residual orbital component underwent eyelid-sparing orbital exenteration (n = 2). Histopathology revealed residual tumor in 5 cases with tumor-free margins and 2 cases had no evidence of residual tumor. External beam radiotherapy to the orbit and/or regional lymph nodes was performed in 7 cases as adjuvant treatment. No tumor recurrence was noted in any patient at a mean follow up period of 18 months (median, 14 months; range, 3 to 63 months). Of the 3 cases with no surgical intervention, 1 case had good response, 1 had moderate response, and 1 had poor response to treatment. In this series, 1 patient with metastasis at presentation died due to systemic metastasis 19 months after completion of neoadjuvant chemotherapy.

DISCUSSION

Neoadjuvant chemotherapy for eyelid SGC could facilitate eyelid and globe preservation by significant tumor volume reduction, spare the patient from radical neck dissection in those with regional lymph node metastasis, lower the risk of systemic metastasis, and prolong the disease-free survival period. Neoadjuvant systemic chemotherapy downstages the disease and provides significant benefits of organ preservation, locoregional tumor control, lower risk of distant metastasis, and prolonged overall survival period.18–22

The standard chemotherapy agents used in the management of head and neck cancers are platinum-based agents (cisplatin/carboplatin) and 5-fluorouracil.20,23–27 The other chemotherapy agents with beneficial effect in head and neck cancers include docetaxel, paclitaxel, leucovorin, and panitumumab.26,23–28 With the encouraging results of the use of neoadjuvant systemic chemotherapy in the management of head and neck squamous cell carcinoma, similar treatment has been used for locally advanced eyelid and/or extraorbital SGC.15–16,31,32 In our study, a combination of platinum-based agents (cisplatin/carboplatin) and 5-fluorouracil was used in all cases. The overall response rate following neoadjuvant chemotherapy in our series ranged from 30% to 100% with a complete response (with no evidence of tumor on histopathology) in 2 cases.

Several previous single case reports describe effective use of neoadjuvant chemotherapy in patients with advanced sebaceous carcinoma of eyelid (Table 2). In a previous report published in 1985 by Paschal and Bagley,13 a combination of surgery, radiotherapy, and sequential combination chemotherapy was used to achieve complete tumor regression in a 48-year-old patient. In another report by Priyadarshini et al.,15 neoadjuvant

TABLE 2. Published reports on neoadjuvant chemotherapy for eyelid sebaceous gland carcinoma

<table>
<thead>
<tr>
<th>Author (year of publication)</th>
<th>Number of patients</th>
<th>Age (years)/ Gender</th>
<th>Chemotherapy regimen</th>
<th>Number of cycles of neoadjuvant chemotherapy</th>
<th>Response to chemotherapy</th>
<th>Tumor recurrence at last follow up</th>
<th>Final outcome at last follow up</th>
<th>Follow-up duration (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paschal BR et al (1985)15</td>
<td>1</td>
<td>48/M</td>
<td>5-fluorouracil</td>
<td>7</td>
<td>Complete response*</td>
<td>No</td>
<td>Alive</td>
<td>4</td>
</tr>
<tr>
<td>Priyadarshini et al (2010)15</td>
<td>1</td>
<td>35/M</td>
<td>Carboplatin, 5-fluorouracil</td>
<td>1</td>
<td>Complete response</td>
<td>No</td>
<td>Alive</td>
<td>18</td>
</tr>
<tr>
<td>Gogia et al (2013)16</td>
<td>1</td>
<td>48/M</td>
<td>Carboplatin, 5-fluorouracil</td>
<td>3</td>
<td>Partial response</td>
<td>No</td>
<td>Alive</td>
<td>10</td>
</tr>
<tr>
<td>Current study (2015)</td>
<td>10</td>
<td>58±6F, 4M</td>
<td>Carboplatin, 5-fluorouracil</td>
<td>3‡ (N=8) Complete response (n=2)</td>
<td>Partial response</td>
<td>No</td>
<td>Alive (n = 9) Dead (n = 1)</td>
<td>18‡</td>
</tr>
</tbody>
</table>

*Complete response was achieved after 2 sequential courses of chemotherapy and surgical intervention between the 2 courses of chemotherapy;
†Mean age at presentation;
‡Mean number of chemotherapy cycles;
§Mean follow-up period.
chemotherapy was used in a 64-year-old patient with recurrent SGC and regional lymph node metastasis who had complete response to 1 cycle of neoadjuvant chemotherapy without the need for surgical excision of eyelid tumor. Another report by Gogia et al. described the use of neoadjuvant chemotherapy in a 48-year-old patient with eyelid SGC infiltrating the lateral rectus muscle, in which a lesser mutilating surgery could achieve tumor control, and thus avoiding orbital exenteration. Similarly, Murthy et al. described the use of neoadjuvant chemotherapy in a 55-year-old patient with recurrent SGC and regional lymph node metastasis, which caused significant tumor volume reduction making eyelid-sparing orbital exenteration possible and sparing the patient from radical neck dissection. In our series of 10 cases, significant tumor volume reduction was achieved in all cases, facilitating a less mutilating surgery. Of the 10 cases who received neoadjuvant chemotherapy, 6 cases were suitable for eyelid excision biopsy (60%) and 4 cases for eyelid-sparing orbital exenteration (40%). However, only 5 cases underwent surgical excision biopsy and 2 cases underwent eyelid-sparing orbital exenteration. A tumor-free margin was achieved in all the 7 cases. Radical neck dissection for lymph node metastasis could be avoided in all those cases with preexisting lymph node metastasis (n = 6). Possible microscopic residual tumor in the orbit and lymph nodes was treated by adjuvant external beam radiotherapy. In our case series, neoadjuvant chemotherapy could potentially salvage eyelid, globe, and orbital contents in 60% cases and downstage the regional lymph node metastasis in 100% cases.

In this series, there was no evidence of tumor recurrence in any case, and disease-related mortality occurred in only 1 case. However, the follow-up duration is short with a mean follow-up period of 18 months, and 4 patients had a follow-up duration of less than a year. Long-term results in a larger group of patients are warranted.

In summary, neoadjuvant chemotherapy is a promising and safe treatment strategy for patients with locally advanced eyelid SGC providing adequate tumor volume reduction with additional benefit of locoregional tumor control. Additional studies with long-term results in a large cohort will assist in further defining the role and limitations of neoadjuvant chemotherapy in the management of eyelid SGC.

REFERENCES